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Abstract

We aim here at obtaining an explicit expression of the solution of the Dirichlet and
Poisson problems on graphs. To this end, we consider the Laplacian of a graph as a
kernel on the vertex set, V , in the framework of Potential Theory. Then, the properties
of such a kernel allow us to obtain for each proper vertex subset the equilibrium
measure that solves the so-called equilibrium problem. As a consequence, the Green
function of the Dirichlet problems, the generalized Green function of the Poisson
problems and the solution of the condenser principle are obtained solely in terms
of equilibrium measures for suitable subsets. In particular, we get a formula for
the effective resistance between any pair of vertices of a graph. Specifically, rxy =
1
n (νx(y) + νy(x)), where νz denotes the equilibrium measure for the set V − {z}. In
any case, the equilibrium measure for a proper subset is accomplished by solving a
Linear Programming Problem.
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1 Introduction

It is well known that a flow of electric current in a network has a random walk as proba-
bilistic counterpart. This follows from the fact that both can be seen as the solution of a
suitable Dirichlet problem. When the network is finite and each edge has resistance 1, the
network is modeled by a finite graph, and then the above mentioned problem is certainly
a Dirichlet problem with respect to the discrete Laplacian of the graph, [8, 4].

A classical Dirichlet problem is a boundary value problem with respect to the Laplacian
operator. Its solution could be expressed as a Dirichlet potential with respect to the Green
kernel, [2, 11]. The main difficulty in this framework is to obtain an explicit expression of
such a solution, since the Green kernel is a power series.

In the context of Graph Theory, the discrete Laplacian is no more than a matrix.
Hence, it can be considered as a kernel on the vertex set and therefore it is possible to
build a Potential Theory with respect to such a kernel. This point of view will take validity
as the Laplacian kernel enjoys properties that lead to obtain explicit expressions of the
solution of the Dirichlet problems. With hindsight, we will show that the Laplacian kernel
verifies fundamental principles that allow solving the so-called equilibrium problem for any
proper vertex subset.

By solving equilibrium problems for suitable subsets, we will build the Green function
associated with each Dirichlet problem and hence its solution. This technique is also valid
to obtain the solution, when it exists, of the Poisson problem, that is, the “degenerate”
Dirichlet problem in which the boundary is empty. We also prove that the solution of
the Dirichlet problem with piecewise constant boundary condition 0-1 solves the so-called
condenser principle. The particular case where the boundary consist of two vertices allows
us to get a formula for the effective resistance between any pair of vertices of a graph.

To summarize, the results here obtained for the Dirichlet and Poisson problems mainly
hinge on the knowledge of the equilibrium measures that are solutions of appropriate
equilibrium problems. Let us point out that the properties of the Laplacian, considered
as a kernel in the framework of the Potential Theory, allow us to accomplish the effective
computation of such measures by solving Linear Programming Problems.

Throughout the paper, Γ = (V, E) denotes a (simple and finite) connected graph, with
vertex set V , |V | = n, and edge set E, |E| = m. The distance from x to y is denoted
by d(x, y) and d = d(Γ) = max{d(x, y) : x, y ∈ V (Γ)} stands for the diameter of Γ.
The set of vertices adjacent to x is denoted by Γ(x) and its cardinality is the degree of x,
δ(x) = |Γ(x)|. Given F ⊂ V , we denote by F c its complement in V , and we consider the
subsets δ(F ) = {x ∈ F c : (x, y) ∈ E for some y ∈ F} and Ext(F ) = F c\δ(F ). In addition,
for x ∈ F , we call exterior degree of x with respect to F the number ∂−(x) = |Γ(x) ∩ F c|.

The Laplacian matrix of Γ is the n× n-matrix L = L(Γ) indexed by the vertices of Γ,
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whose entries Lxy are given by Lxy = −1 if x is adjacent to y, in short x ∼ y, Lxx = δ(x)
and Lxy = 0 otherwise. The matrix L is symmetric and positive semidefinite. Finally, LF

will denote the (|F |×|F |)-matrix associated with the restriction of L to the set F .

2 The Equilibrium Problem

In this section we present some results from Potential Theory that have been published
by the authors in [1]. However we include them by completeness and because they will be
used later. With this aim, we consider as underlying space the vertex set V of a graph Γ
and its Laplacian matrix L as a kernel on V . We take advantage from this new point of
view because the Laplacian of a graph, considered as a kernel, enjoys general properties
which can easily be applied to solve the Dirichlet and Poisson Problems.

The sets M(V ) and M+(V ) of measures and positive measures on V are identified
with IRn and the positive cone of IRn, respectively. So, if µ ∈M(V ), then its support and
its mass are given by S(µ) = {x ∈ V : µ(x) 6= 0} and ||µ|| =

∑
x∈V

|µ(x)|. For each vertex

x ∈ V , εx stands for the Dirac measure on x whereas the measure
∑

x∈V
εx will be denoted

by 11111111111111. In addition, we denote by M1(V ) the set of positive measures on V with unit mass
and if F ⊂ V , M(F ) = {µ ∈M(V ) : S(µ) ⊂ F}.

If µ ∈M(V ) the potential of µ is given by

Lµ(x) =
∑
y∼x

(µ(x)− µ(y)) = δ(x)µ(x)−
∑
y∼x

µ(y),

and the energy of µ is the value

I(µ) = 〈Lµ, µ〉 =
∑

(x,y)∈E

(µ(x)− µ(y))2,

where 〈·, ·〉 denotes the standard inner product in IRn.

Let us start by showing that the Laplacian kernel verifies the energy and maximum
principles, which will be the key to solve the equilibrium problem for a proper subset F of
V :

Find ν ∈M+(F ) such that Lν(x) = 1 if x ∈ F.

In fact, we will prove that this problem has a unique solution νF ∈ M+(F ) called the
equilibrium measure for F .

Proposition 2.1 The Laplacian kernel verifies the energy principle, i.e., L is strictly
positive definite on {µ ∈M(V ) :

∑
x∈V

µ(x) = 0}.
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Proof. It is clear that I(µ) ≥ 0 for all µ ∈ M(V ). Moreover, I(µ) = 0 iff µ(x) = µ(y)
when (x, y) ∈ E. Hence, I(µ) = 0 iff µ = a11111111111111, a ∈ IR, since Γ is connected.

Let us point out that the energy principle is well-known (see for instance [5]). Moreover,
it is equivalent to the fact that I is strictly convex on M1(V ), that is, I(µ− ν) > 0 for all
µ, ν ∈M1(V ) with µ 6= ν. To see this equivalence, it suffices to observe that

{
µ ∈M(V ) :

∑

x∈V

µ(x) = 0
}

=
{
t(µ− ν) : t ≥ 0 and µ, ν ∈M1(V )

}
.

Proposition 2.2 The Laplacian kernel verifies the maximum principle, i.e.,

max
x∈V

Lµ(x) = max
x∈S(µ)

Lµ(x) for all µ ∈M+(V ).

Proof. Given µ ∈ M+(V ) and F = S(µ), it is verified that Lµ(x) = − ∑
y∼x

µ(y) ≤ 0 if

x ∈ δ(F ) and Lµ(x) = 0 if x ∈ Ext(F ). Therefore it suffices to prove that there exists
a vertex x ∈ F such that Lµ(x) ≥ 0. Let x ∈ F such that µ(x) = max

y∈F
µ(y). Then

Lµ(x) ≥ 0.

Next we tackle the solution of the equilibrium problem. With this aim, we first prove
the existence of measures whose potentials are constants.

Proposition 2.3 For each F ⊂ V there exists a unique σ ∈ M1(F ) whose potential is
constant on F .

Proof. Suppose that σ ∈ M1(F ) is such that Lσ(x) = a, a ∈ IR, for all x ∈ F . Then
〈Lσ, σ〉 = a and hence a = I(σ). In particular this implies that a ≥ 0.

Now, we prove that σ ∈ M1(F ) verifies Lσ(x) = I(σ) for all x ∈ F if and only if
Lσ(x) ≥ I(σ) for all x ∈ F . Clearly, it is enough to prove the only if condition. Suppose
that Lσ(x)− I(σ) ≥ 0 for all x ∈ F , then

0 ≤
∑

x∈S(σ)

(Lσ(x)− I(σ))σ(x) = 〈Lσ, σ〉 − I(σ) = 0,

which implies that Lσ(x) = I(σ) for all x ∈ S(σ). Therefore Lσ(x) ≤ I(σ) for all x ∈ V ,
because L verifies the maximum principle and hence, Lσ(x) = I(σ) for all x ∈ F .

On the other hand, Lσ(x) ≥ I(σ) for all x ∈ F is equivalent to 〈Lσ, µ− σ〉 ≥ 0 for all
µ ∈ M1(F ). But, this last condition is the Euler inequality relative to the minimization
problem

min
µ∈M1(F )

I(µ).
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So, as I is convex on M1(F ), σ verifies the Euler inequality iff I attains its minimum value
on M1(F ) at σ. Furthermore, the extremal measure is unique since I is strictly convex
on M1(F ). Finally, there exists an extremal measure because M1(F ) is compact and I
is continuous.

Corollary 2.4 For each F a proper subset of V there exists a unique equilibrium measure
for F , νF . Moreover, S(νF ) = F .

Proof. If σ is the measure given in Proposition 2.3, then I(σ) > 0 and it suffices to
consider νF = I(σ)−1σ.

On the other hand, suppose that there exists x ∈ F such that νF (x) = 0. Then,
LνF (x) ≤ 0 contradicting that LνF (x) = 1.

We now prove a monotoniticity property for the equilibrium measures. Roughly speak-
ing, the mass of the equilibrium measure at each vertex decreases when the vertex subset
decreases.

Proposition 2.5 If H ⊂ F are proper subsets of V , then νF ≥ νH .

Proof. Let us denote µ = νF − νH . It suffices to prove that if x ∈ F is such that
µ(x) = min

z∈F
µ(z), then µ(x) ≥ 0. Note that Lµ ≥ 0 in F and hence

0 ≤ Lµ(x) = δ(x)µ(x)−
∑
z∼x
z∈F

µ(z) ≤ ∂−(x)µ(x).

If ∂−(x) > 0, then µ(x) ≥ 0. If ∂−(x) = 0, then 0 ≤ ∑
z∼x

(µ(x) − µ(z)) ≤ 0. Therefore

µ(z) = µ(x) for all z ∼ x. Repeating this reasoning for a vertex z ∼ x and using the fact
that Γ is connected and F is a proper set, there would exist a vertex w ∈ F such that
µ(w) = µ(x) and ∂−(w) > 0.

The proof of the above proposition shows in fact, that LF is a monotone matrix, that
is, for each µ ∈M(F ) such that LF µ ≥ 0 it is verified that µ ≥ 0, (see [7].)

We will finish this section by giving two alternative ways to obtain the equilibrium
measure for F , or equivalently the unique measure σ of the Proposition 2.3. The first one
is based on the energy minimization. Specifically, for each F , σ can be obtained as the
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solution of a Convex Quadratic Programming Problem, namely

min
µ ≥ 0

∑
µ(x) = 1

∑

x, y ∈ F

L(x, y)µ(x)µ(y).

The second method enables us to obtain the pair (σ, I(σ)) as the solution of a Linear
Programming Problem. For see this, we first prove that σ is also the unique solution of a
suitable extremal problem relative to the potential.

Proposition 2.6 For each F ⊂ V , the problem

min
µ∈M1(F )

max
x∈F

Lµ(x)

has as sole solution the unique measure σ ∈M1(F ) whose potential is constant on F .

Proof. From the proof of Proposition 2.3, Lσ(x) = I(σ) for x ∈ F . Then,

I(σ) = max
x∈F

Lσ(x) ≥ min
µ∈M1(F )

max
x∈F

Lµ(x).

Conversely, let µ ∈M1(F ) and consider a = max
x∈F

Lµ(x). Then, I(µ) = 〈Lµ, µ〉 ≤ a which

implies that I(σ) ≤ a and, a fortiori, I(σ) ≤ min
µ∈M1(F )

max
x∈F

Lµ(x).

Adding a new variable that majorizes the potential values, the above min-max problem
can be re-written as a minimization problem in the following way:

min
µ ≥ 0

∑
µ(x) = 1

LF µ ≤ a11111111111111

a

Clearly, this is a Linear Programming Problem whose unique solution is the couple (σ, I(σ)).

3 Dirichlet and Poisson Problems

In this section we will tackle the discrete version of two classical problems, namely Dirichlet
and Poisson Problems, in the context of graphs. For this, we bear in mind the natural
identification between functions and measures on a finite space. Specifically, if C(V )
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denotes the set of all real functions on V , then C(V ) ≡M(V ). This identification will be
used fruitfully in the rest of our work.

Given F a non-empty subset of V , f ∈ C(F ) and g ∈ C(F c), the Dirichlet Problem
(see [2, p. 220]) consists in finding u ∈ C(V ) such that

Lu = f in F,
u = g in F c.

(1)

The special case F = V , which was considered in [4], will be called here the Poisson
Problem for V , (see [10].) Therefore, the Poisson Problem consists in finding u ∈ C(V )
such that

Lu = f in V. (2)

Our main goal is to obtain explicitly the solutions of both problems. To this end, we show
that the so-called Green functions can be obtained by solving either |F |+1 or n equilibrium
problems at most. Therefore, the Green functions could be obtained by solving Linear
Programming Problems.

Let us start solving the Dirichlet Problem (1). Our methodology follows the standard
steps both in the discrete and in the continuous settings (see [6] for a reference in the
graph context).

Observe that this problem has at most a solution, since the homogeneous problem has
as unique solution u = 0. As usual, the first step in the resolution of (1) is to transform it
into a semi-homogeneous problem. Specifically, u is a solution of (1) iff v = u− ĝ satisfies

Lv = h in F,
v = 0 in F c,

(3)

where h = f −Lĝ and ĝ ∈ C(V ) is given by ĝ(x) = g(x) if x ∈ F c and ĝ(x) = 0 if x ∈ F .

A function G : V ×F −→ IR is called the Green function for F if Gy(·) = G(·, y) is the
solution of the semi-homogeneous Dirichlet Problem for h = εy, when y ∈ F , that is,

LGy = εy in F,
Gy = 0 in F c.

Clearly, the Green function for F is unique and the solution of (3) is given by

v(x) =
∑

y∈F

G(x, y)h(y).

Next, we use the results of the preceding section to obtain an explicit formula of the
Green function.
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Proposition 3.1 Let F be a proper subset of V and νF its equilibrium measure. If for
each y ∈ F , νF

y denotes the equilibrium measure for F − {y}, the Green function for F is
given by

G(x, y) =
νF (y)

||νF || − ||νF
y ||

(
νF (x)− νF

y (x)
)
.

Proof. Let y ∈ F and consider Gy =
νF (y)

||νF || − ||νF
y ||

(
νF − νF

y

)
. Then, Gy = 0 in F c,

since S(νF ), S(νF
y ) ⊂ F . Moreover, as LνF = 11111111111111 in F and LνF

y = 11111111111111 in F − {y} then
L(νF − νF

y ) = (1− LνF
y (y))εy in F . On the other hand,

||νF
y || = 〈LνF , νF

y 〉 = 〈νF ,LνF
y 〉 = ||νF || − νF (y)

(
1− LνF

y (y)
)
.

Therefore LGy = εy in F , and hence G(x, y), x ∈ V, y ∈ F must be the Green function for
F .

It is well known that the Green Function of the Laplacian has important properties.
In particular, G is symmetric on F × F because L is symmetric. Furthermore, from the
monotonicity property given in Proposition 2.5 and from the obtained expression for G,
it follows that the Green Function is non-negative.

Now let us consider the Poisson Problem. To begin with, let us recall that the Poisson
Problem has solution iff f verifies 〈f,11111111111111〉 = 0; i.e., for a fixed z ∈ V , f =

∑
y∈V

f(y)(εy −
εz). Moreover, if u is a solution of (2), then u + a11111111111111, a ∈ IR is also a solution (see [4]).
Consequently, the equilibrium problem for V has no solution.

For a fixed vertex z ∈ V a function Gz : V × V −→ IR will be called z-Green Function
if for each y ∈ V , Gz

y is a solution of the following Poisson Problem,

LGz
y= εy − εz in V

and moreover Gz
y(z) = 0. Clearly, the z-Green Function is unique and

u(x) =
∑

y∈V

Gz(x, y)f(y),

is the unique solution of (2) that verifies u(z) = 0.

By using once again the equilibrium measure techniques, we get the expression of the
z-Green Function.

Proposition 3.2 If for each y ∈ V , νy denotes the equilibrium measure for V − {y}, the
z-Green Function is given by

Gz(x, y) =
1
n

(νz(x) + νy(z)− νy(x)).
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Proof. Clearly, Gz(z, y) = 0 for all y ∈ V . Moreover, for each y ∈ V , 〈Lνy,11111111111111〉 = 0, that is,
n−1+Lνy(y) = 0. Hence, Lνy = 11111111111111−nεy and L(νz +νy(z)11111111111111−νy) = L(νz−νy) = n(εy−εz).

To end this section we show that the verification of a well known result in electrostatics,
namely the condenser principle, is equivalent to the resolution of certain Dirichlet problem.

It is said that the condenser principle is satisfied if for any E, H ⊂ V , E ∩ H =
∅, E,H 6= ∅, there exists u ∈ C(V ) verifying:

Lu(x) = 0, 0 ≤ u(x) ≤ 1 if x ∈ (E ∪H)c,

Lu(x) ≥ 0, u(x) = 1 if x ∈ E,

Lu(x) ≤ 0, u(x) = 0 if x ∈ H.

(4)

Proposition 3.3 Let E, H ⊂ V , E ∩H = ∅, E, H 6= ∅. Then, u is the solution of (4) iff
u is the solution of the following Dirichlet Problem

Lu(x) = 0 if x ∈ (E ∪H)c,

u(x) = 1 if x ∈ E,

u(x) = 0 if x ∈ H.

(5)

Moreover,

u =
∑

x∈E

ν{x}∪F − νF

ν{x}∪F (x)
,

where F = (E ∪H)c.

Proof. Firstly, we show that the above function is the solution of (5). Note that S(u) ⊂
F ∪ E. Therefore u = 0 in H. Besides, S(νF ) = F and S(ν{x}∪F ) = {x} ∪ F , and hence
from Corollary 2.4, u = 11111111111111 in E. Finally, Lu = 0 in F , since Lν{x}∪F = 11111111111111 and LνF = 11111111111111 in
F .

To conclude it suffices to prove that if u is the solution of (5), then u is the solution of
(4). From Proposition 2.5, ν{x}∪F ≥ νF and hence u ≥ 0. On the other hand, if y ∈ H,
Lu(y) = − ∑

z∼y
u(z) ≤ 0. Consider, v = 11111111111111− u, then v is the solution of

Lv(x) = 0 if x ∈ F,

v(x) = 0 if x ∈ E,

v(x) = 1 if x ∈ H.

Therefore, reasoning as above, v ≥ 0, Lv(y) ≤ 0 if y ∈ E and a fortiori u ≤ 11111111111111 and
Lu(y) ≥ 0 if y ∈ E.
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If we allow that H = ∅, then the condenser principle is known in the literature as
the equilibrium principle for E relative to the Laplacian operator (see [2]) and it must not
be mistaken for the equilibrium with respect to the Laplacian kernel we have used here.
Note that unlike the continuous case, the equilibrium problem for E with respect to the
Laplacian operator is not outstanding, since its solution is obviously u = 11111111111111.

4 Applications

There exists a variety of Dirichlet and Poisson Problems whose translation to the context
of networks and random walks has a wide range of applications. In this section we deal
with problem (5) in the special case E = {x} and H = {y}. So, we consider Γ as an
electrical network in which each edge has unit resistance. For concepts and results not
given here we refer the reader to P. Doyle & J. Snell [8] and N. Biggs [3, 4].

One of the main problems in Network Theory is to calculate the effective resistance
between any pair of vertices. If x, y ∈ V , the effective resistance between x and y is defined
as rxy = u(x)−u(y), where u ∈ C(V ) is any solution of the Poisson Problem Lu = εx−εy.
Note that rxy does not depend on the chosen solution and rxy = ryx. Clearly, from the
definition of the y-Green Function we can take u(z) = Gy(z, x) and hence rxy = Gy(x, x).
Finally, from Proposition 3.2 we get

rxy =
1
n

(νx(y) + νy(x)). (6)

Using this expression we can also get formulas for the effective conductance between x
and y, which is defined as γxy = r−1

xy , or the escape probability denoted by Pesc(x, y). This
parameter is the probability that a walk starting at x reaches y before it returns to x. So,
as known, Pesc(x, y) =

γxy

δ(x)
and hence

Pesc(x, y) =
n

δ(x)(νx(y) + νy(x))
.

Some known results about the effective resistances can be proved by using (6). For
instance, the following one is originally due to R.M. Foster [9]:

∑

(x,y)∈E

rxy =
1
2

∑
x

∑
y∼x

rxy =
1
n

∑
x

∑
y∼x

νx(y) = − 1
n

∑
x

Lνx(x) = n− 1.

Although the effective resistance and the above concepts have been expressed here in
terms of the solution of a Poisson Problem, they can also be obtained from the solution
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of one of the Dirichlet Problems raised in (5). Namely,

Lv = 0 in V − {x, y}
v(x) = 1
v(y) = 0.

(7)

To see that, let u be any solution of the Poisson Problem Lu = εx − εy. Then, v =
γxy(u− u(y)) verifies v(x) = 1 by definition of γxy and Lv = γxyLu = γxy(εx − εy) = 0 in
V − {x, y}, and hence v is the solution of (7). On the other hand, I(v) = γ2

xyI(u) = γxy,
since I(u) = rxy. If we take again u = Gy

x we get that

v =
νy − νx + νx(y)
νx(y) + νy(x)

.

Alternatively, from Proposition 3.3, v can be expressed by

v =
νy − νxy

νy(x)
,

where νxy is the equilibrium measure for V − {x, y}.
In the context of random walks, v(z) is the probability that if the walk starts at z it

will reach x before it reaches y.

Let us point out that to compute the effective resistance between any pair of vertices
it suffices to solve n equilibrium problems and hence n Linear Programming Problems.
However, it is clear that the number of problems that we have to solve, could be drasticly
reduced if we have additional information about the graph structure. The most striking
case appears when Γ is a distance-regular graph in which it suffices to solve a unique
Linear Programming Problem.

This kind of graphs have been studied by N. Biggs [3] and the authors [1]. Specifically,
we showed that in a distance-regular graph for each vertex x the equilibrium measure νx

is distributed by distances. This means that there exist 0 < q1 < · · · < qd such that
νx(y) = qi iff d(x, y) = i. Therefore, in a distance-regular graph for any pair of vertices
x, y, the effective resistance and the escape probability between them are:

rxy = 2
qi

n
and Pesc(x, y) =

n

2kqi
if d(x, y) = i,

where k is the degree of Γ. In particular, q1 = (n − 1)/k, since 1 − n = Lνx(x) =
− ∑

z∼x
νx(z) = −kq1. Hence, the effective resistance between adjacent vertices is rxy =

(n− 1)/m, a well known result due also to Foster.

We must note that there exist non distance-regular graphs verifying that the equilib-
rium measures νx are distributed by distances. Therefore, the above results hold in such
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graphs. For instance, this is the case of the “Buckyball” graph (see [5] for the definition
of such graph.)

Finally, we present the equilibrium measures and the effective resistances of some very
simple graphs for which the effective resistance is well-known.

If Γ is a cycle, Cn, then νx(y) =
d(x, y)(n− d(x, y))

2
and rxy =

d(x, y)(n− d(x, y))
n

.

If Γ is a path, Pn = {x1, . . . , xn}, then

νxi(xj) =
1
2

{
d(xi, xj)(d(xi, xn) + d(xj , xn) + 1) if 1 ≤ i < j ≤ n

d(xi, xj)(d(xi, x1) + d(xj , x1) + 1) if 1 ≤ j < i ≤ n

and rxixj = d(xi, xj).

If Γ is a complete graph, Kn, then νx(y) = 1 and rxy = 2/n.

If Γ is a bipartite complete graph, Kp,q, with partite sets V0 and V1, then

νx(y) =





n

q
x, y ∈ V0

n− 1
q

x ∈ V0, y ∈ V1

n− 1
p

x ∈ V1, y ∈ V0

n

p
x, y ∈ V1

and rxy =





2
q

x, y ∈ V0

n− 1
m

x ∈ V0, y ∈ V1

2
p

x, y ∈ V1.
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